Substitutions at the putative receptor-binding site of an encephalitic flavivirus alter virulence and host cell tropism and reveal a role for glycosaminoglycans in entry.
نویسندگان
چکیده
The flavivirus receptor-binding domain has been putatively assigned to a hydrophilic region (FG loop) in the envelope (E) protein. In some flaviviruses this domain harbors the integrin-binding motif Arg-Gly-Asp (RGD). One of us has shown earlier that host cell adaptation of Murray Valley encephalitis virus (MVE) can result in the selection of attenuated variants altered at E protein residue Asp(390), which is part of an RGD motif. Here, a full-length, infectious cDNA clone of MVE was constructed and employed to systematically investigate the impact of single amino acid changes at Asp(390) on cell tropism, virus entry, and virulence. Each of 10 different E protein 390 mutants was viable. Three mutants (Gly(390), Ala(390), and His(390)) showed pronounced differences from an infectious clone-derived control virus in growth in mammalian and mosquito cells. The altered cell tropism correlated with (i) a difference in entry kinetics, (ii) an increased dependence on glycosaminoglycans (determined by inhibition of virus infectivity by heparin) for attachment of the three mutants to different mammalian cells, and (iii) the loss of virulence in mice. These results confirm a functional role of the FG loop in the flavivirus E protein in virus entry and suggest that encephalitic flaviviruses can enter cells via attachment to glycosaminoglycans. However, it appears that additional cell surface molecules are also used as receptors by natural isolates of MVE and that the increased dependence on glycosaminoglycans for entry results in the loss of neuroinvasiveness.
منابع مشابه
Glycosaminoglycans in Entry Tropism and Reveal a Role for Flavivirus Alter Virulence and Host Cell Receptor-Binding Site of an Encephalitic
متن کامل
The evil role of spike in the coronaviruses: structure, function and evolution
1. Lu R, Zhao X, Li J, et al (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395:565–574 2. Zhou P, Tachedjian M, Wynne JW, et al (2016) Contraction of the type i IFN locus and unusual constitutive expression of IFN-α in bats. Proc Natl Acad Sci U S A 113:2696–2701 . doi: 10.1073/pnas.1518240113 3. Wu A, P...
متن کاملCommon E protein determinants for attenuation of glycosaminoglycan-binding variants of Japanese encephalitis and West Nile viruses.
Natural isolates and laboratory strains of West Nile virus (WNV) and Japanese encephalitis virus (JEV) were attenuated for neuroinvasiveness in mouse models for flavivirus encephalitis by serial passage in human adenocarcinoma (SW13) cells. The passage variants displayed a small-plaque phenotype, augmented affinity for heparin-Sepharose, and a marked increase in specific infectivity for SW13 ce...
متن کاملStructural insights into the effects of charge-reversal substitutions at the surface of horseradish peroxidase
Horseradish peroxidase (HRP), has gained significant interests in biotechnology, especially in biosensor field and diagnostic test kits. Hence, its solvent-exposed lysine residues 174, 232, and 241 have been frequently modified with the aim of improving its stability and catalytic efficiency. In this computational study, we investigated the effects of Lys-to-Glu substitutions on HRP structure t...
متن کاملMechanism of virulence attenuation of glycosaminoglycan-binding variants of Japanese encephalitis virus and Murray Valley encephalitis virus.
The in vivo mechanism for virulence attenuation of laboratory-derived variants of two flaviviruses in the Japanese encephalitis virus (JEV) serocomplex is described. Host cell adaptation of JEV and Murray Valley encephalitis virus (MVE) by serial passage in adenocarcinoma cells selected for variants characterized by (i) a small plaque phenotype, (ii) increased affinity to heparin-Sepharose, (ii...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 74 19 شماره
صفحات -
تاریخ انتشار 2000